\qquad Date: \qquad

Student Exploration: Equilibrium and Concentration

Vocabulary: chemical equilibrium, concentration, equilibrium, equilibrium constant, reaction quotient, reversible reaction

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
Gary has $\$ 5,000$ in his bank account and earns a modest salary. Every month he pays for rent, food, utilities, and entertainment.
A. How will Gary's account change if he saves more than he spends? \qquad
B. How will Gary's account change if he spends more than he saves? \qquad
C. What happens if Gary spends exactly as much as he saves? \qquad

Gizmo Warm-up

If Gary spends exactly as much as he earns, his savings will be in equilibrium. Equilibrium occurs when two opposing processes occur at the same rate, leading to no net change. In the Equilibrium and Concentration Gizmo ${ }^{\text {TM }}$, you will investigate how equilibrium can occur in chemical reactions.

To begin, check that Reaction 1 is selected. Set Moles $\mathbf{N O}_{2}$ to 8 and Moles $\mathrm{N}_{2} \mathrm{O}_{4}$ to 0 .

1. Click Play (\downarrow) and observe the colliding molecules. What do you notice? \qquad

In the Gizmo, a blue flash appears every time two reactants combine to form a product. A red flash appears every time a product dissociates into reactants.
2. Click Reset (乌), and set Moles NO_{2} to 0 and Moles $\mathbf{N}_{2} \mathbf{O}_{4}$ to 8. Click Play.

What do you notice now? \qquad
3. When a reaction can proceed in either direction, it is a reversible reaction. Based on what you have observed, is the synthesis of NO_{2} into $\mathrm{N}_{2} \mathrm{O}_{4}$ a reversible reaction? Explain.

Activity A:	Get the Gizmo ready:	89
Reversible reactions	- Click Reset. Reaction 1 should be selected. - Set Moles NO_{2} to 8 and Moles $\mathbf{N}_{2} \mathbf{O}_{4}$ to 0 . - Move the Sim. speed slider all the way to the right.	

Question: What are the characteristics of reversible reactions?

1. Predict: Suppose you began with 8 moles of NO_{2} in the chamber. What do you think will happen if you let the reaction go for a long time? \qquad
\qquad
2. Test: Click Play. Select the BAR CHART tab and check that Moles is selected. Observe the bar chart for about 30 seconds. As time goes by, what do you notice about the bars representing moles NO_{2} and moles $\mathrm{N}_{2} \mathrm{O}_{4}$?
3. Observe: Click Pause (II). Select the GRAPH tab. Click the (-) zoom control on the horizontal axis until you can see the whole graph. What do you notice?

This situation, in which the overall amounts of reactants and products does not change significantly over time, is called a chemical equilibrium.
4. Record: On the BAR CHART tab, turn on Show data values. How many moles of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are there right now? Moles NO_{2} \qquad Moles $\mathrm{N}_{2} \mathrm{O}_{4}$ \qquad
5. Calculate: Suppose all the NO_{2} molecules were synthesized into $\mathrm{N}_{2} \mathrm{O}_{4}$. Given the equation $2 \mathrm{NO}_{2} \rightleftarrows \mathrm{~N}_{2} \mathrm{O}_{4}$, how many moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ would be produced? \qquad
6. Experiment: Click Reset. On the INITIAL SETTINGS tab, set Moles NO_{2} to 0 and Moles $\mathbf{N}_{2} \mathrm{O}_{4}$ to 4 . Click Play. Click Pause when the bars of the bar chart stop moving very much.
A. List the current amounts of each substance: Moles NO_{2} \qquad Moles $\mathrm{N}_{2} \mathrm{O}_{4}$ \qquad
B. How do these results compare to starting with 8 moles of NO_{2} ? \qquad
(Activity A continued on next page)

Activity A (continued from previous page)

7. Summarize: In each trial, you started with the same amounts of nitrogen and oxygen. In this situation, did the equilibrium amounts change depending on the direction of the reaction?
8. Set up the Gizmo: Click Reset and select the EXPERIMENT tab on the left. On the INITIAL SETTINGS tab on the right, select Reaction 2. Set Moles NO to 5, Moles $\mathbf{N O}_{2}$ to 5 , and Moles $\mathbf{N}_{2} \mathbf{O}_{3}$ to 0 . What are the reactants and product of this reaction?

Reactants: \qquad Product: \qquad
(Note: In this reaction, some of the NO_{2} reactants combine to form $\mathrm{N}_{2} \mathrm{O}_{4}$, as in reaction 1.)
9. Observe: Recall that a blue flash appears every time two reactants combine to form a product. A red flash appears every time a product dissociates into reactants. Click Play.
A. At first, do you notice more blue flashes or red flashes? \qquad
B. What do you notice about the frequency of blue and red flashes as time goes by?
\qquad
C. Click Reset. This time, start the experiment with 0 moles of NO and NO_{2} and 5 moles of $\mathrm{N}_{2} \mathrm{O}_{3}$. Click Play. What do you notice about the red and blue flashes now?
\qquad
10. Explain: Think about how the numbers of blue and red flashes reflect the rates of the forward (reactants \rightarrow products) and reverse (products \rightarrow reactants) reactions.
A. What happens to the rate of the forward reaction as the reactants are consumed?
\qquad
B. What happens to the rate of the reverse reaction as the products are produced?
\qquad
C. Why do reversible reactions always result in chemical equilibria? \qquad
\qquad
\qquad
\qquad

Activity B: The equilibrium constant	Get the Gizmo ready:	
	- Click Reset. Select Reaction 1. - Set Moles $\mathbf{N O}_{2}$ to 2 and Moles $\mathbf{N}_{2} \mathbf{O}_{4}$ to 7 .	

Introduction: When investigating the rates of reactions, it often is useful to consider the concentrations of reactants rather than the total number of moles. Concentrations are often expressed in moles per liter, or mol/L. Brackets are used to signify concentration. For example, " $\left[\mathrm{H}_{2}\right]=5.0 \mathrm{M}$ " means the concentration of hydrogen gas in a chamber is 5.0 moles per liter.

Question: What are the characteristics of reactions in equilibrium?

1. Record: On the BAR CHART tab, select Concentration. Check that Show data values is on. If necessary, use the arrows to adjust the scale of the chart.
A. What are the current concentrations of each compound?

$$
\left[\mathrm{NO}_{2}\right]
$$

B. Click Play and wait for equilibrium to become established. Click Pause. What are the approximate equilibrium concentrations?
$\left[\mathrm{NO}_{2}\right]$ \qquad $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ \qquad
2. Calculate: The value K_{c} represents the ratio of products to reactants in a reaction at equilibrium. The greater the amount of products relative to reactants, the higher the resulting value of K_{c}. For a general reaction between gases: $\mathrm{aA}(g)+b \mathrm{~B}(g) \rightleftharpoons \mathrm{cC}(g)+d \mathrm{D}(g), K_{c}$ is calculated as follows:

$$
K_{c}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
$$

For the current reaction, $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$, we have:

$$
K_{c}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}
$$

Based on the current concentrations of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$, what is K_{c} ? \qquad
Show your work here:
(Activity B continued on next page)

Activity B (continued from previous page)

3. Gather data: Experiment with a variety of initial concentrations of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$. For each set of initial concentrations, use the Gizmo to determine the equilibrium concentrations of each substance. In the last column, find K_{c} for that trial. Run three trials for each set of initial conditions.

Initial $\left[\mathrm{NO}_{2}\right]$	Initial $\left[\mathbf{N}_{2} \mathrm{O}_{4}\right]$	Equilibrium $\left[\mathrm{NO}_{2}\right]$	Equilibrium $\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{4}\right]$	$\boldsymbol{K}_{\boldsymbol{c}}$

4. Calculate: Find the average value of K_{c} for each set of three trials.

Trials 1-3: \qquad Trials 4-6: \qquad Trials 7-9: \qquad
5. Analyze: What do you notice about the values of K_{c} ? \qquad
\qquad
In general, the value of K_{c} will be constant for a given reaction at a constant temperature, no matter the starting concentrations. That is why K_{c} is known as the equilibrium constant. In this Gizmo, the values of K_{c} will vary somewhat because there is a very limited number of molecules in the chamber.
6. On your own: Use the Gizmo to find K_{c} for Reaction 4: $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$. Collect data at least 10 times and average your results to get the best approximation of K_{c}. Show your data and work on a separate sheet of paper.
(Hint: Because of the coefficient " 2 " in front of HI , you will have to square the concentration of HI to find K_{c}.)
$K_{c}=$ \qquad

Introduction: For a reversible reaction with equilibrium constant K_{c}, it often is useful to know in which direction the reaction will proceed given the starting amounts of reactants A and B and products C and D. This is done by calculating the reaction quotient, Q_{c} :

$$
Q_{c}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
$$

Question: How can you predict the direction of a reversible reaction?

1. List: Select the BAR CHART tab. What are the initial concentrations of each substance?
$\left[\mathrm{H}_{2}\right]$ \qquad [I_{2}] \qquad
[HI] \qquad
2. Calculate: Use the equation above to find Q_{c} for the current reaction.
A. What is the current value of Q_{c} ? \qquad
B. In activity B , what value of K_{c} did you arrive at for this reaction? \qquad
C. How does Q_{c} compare to K_{c} ? \qquad
3. Analyze: Recall that Q_{c} is equal to the ratio of product concentrations to reactant concentrations.
A. If there is an excess of products, will Q_{c} be greater than or less than K_{c} ? \qquad
B. If there is an excess of reactants, will Q_{c} be greater than or less than K_{c} ? \qquad
C. In the current situation, is there an excess of products or reactants? \qquad
Explain: \qquad
D. When the reaction begins, do you expect $[\mathrm{HI}]$ to increase or decrease? \qquad
Explain: \qquad
4. Test: Click Play. What happens to $[\mathrm{HI}]$? \qquad
\qquad

Extension:	Get the Gizmo ready:	18808
Equilibrium calculations	- Click Reset. Select Reaction 1. - Set Moles $\mathbf{N O}_{2}$ to 0 and Moles $\mathbf{N}_{2} \mathbf{O}_{4}$ to 6 .	$8 \infty_{8}^{\infty}$

Goal: Given K_{c} and initial concentrations, calculate equilibrium concentrations.

1. List: Select the BAR CHART. What is the initial concentration $\mathrm{N}_{2} \mathrm{O}_{4}$?
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\text {initial }}=$ \qquad
2. Experiment: Click Play and wait for a few seconds. Click Pause before equilibrium is reached.
A. What is the current concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$?
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=$ \qquad
B. How much has the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ gone down? \qquad
C. What is the current concentration of NO_{2} ?
$\left[\mathrm{NO}_{2}\right]=$ \qquad
D. In general, if $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is reduced by x, how much does $\left[\mathrm{NO}_{2}\right]$ increase? \qquad
This result may be surprising. It is true because at constant pressure, the overall density of particles in the container remains constant. So, if the concentration of one substance is reduced by x, the concentration of the other substance increases by x.
3. Manipulate: Begin with the general equation for $K_{c}: K_{c}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}$.
A. What is the equation for K_{c} for the reaction $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$? $\quad K_{c}=$
B. In this experiment, the initial concentration of NO_{2} is zero. If the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is reduced by x at equilibrium, the equilibrium concentration of NO_{2} is equal to x. Substitute the following values into the equation you wrote in step A :

$$
\begin{gathered}
{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\left(\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\text {nitial }}-x\right) \quad\left[\mathrm{NO}_{2}\right]=x} \\
K_{c}=
\end{gathered}
$$

C. In activity A, you discovered that K_{c} for this reaction was close to 0.042 . Substitute this value and the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ into your equation.

$$
=
$$

D. Rearrange the terms of your equation to form a quadratic equation in the form $a x^{2}+b x+c=0$.

$$
=0
$$

(Extension continued on next page)

Extension (continued from previous page)

4. Solve: Because the equation is in the form $a x^{2}+b x+c=0$, you can use the quadratic formula (shown below) to solve for x. Ignore negative solutions because the concentrations cannot be negative. Show your work.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

5. Predict: Based on the value for x, what do you expect the equilibrium concentrations of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ to be?

$$
\left[\mathrm{NO}_{2}\right]
$$

$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ \qquad

Check your work by solving for K_{c} using $K_{c}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}} \quad K_{c}=$ \qquad

If you don't get the correct value of K_{c}, recheck your work.
6. Test: Click Play and wait for equilibrium to be established. What are the actual equilibrium values of each substance?

$$
\left[\mathrm{NO}_{2}\right]
$$

How close were these results to your predicted results? \qquad
7. Challenge: Suppose you begin with 6 moles of NO_{2} and 5 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$. Assuming a value for K_{c} of 0.042 , predict the equilibrium concentrations of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$. (Use the Gizmo to determine the initial concentrations.) Show your work on a separate sheet of paper. After you have made your predictions, click Play and record the experimental results.

Predicted: $\left[\mathrm{NO}_{2}\right]$ \qquad $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ \qquad
Experimental: $\left[\mathrm{NO}_{2}\right]$ \qquad $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ \qquad

